Ne plac numerele
Este 14 martie și asta înseamnă un singur lucru ... este ziua Pi și timpul pentru a sărbători cel mai faimos număr irațional din lume, pi. Raportul circumferinței unui cerc la diametrul său, pi nu este doar irațional, ceea ce înseamnă că nu poate fi scris ca o fracție simplă; este, de asemenea, transcendental, ceea ce înseamnă că nu este rădăcina sau soluția la orice ecuație polinomială, cum ar fi x + 2X ^ 2 + 3 = 0.
Dar nu atât de rapid ... pi poate fi unul dintre cele mai cunoscute numere, dar pentru persoanele care sunt plătite să se gândească la numere toată ziua, constanta cercului poate fi un pic de plictisit. De fapt, nenumărate numere sunt potențial și mai reci decât pi. Am întrebat mai mulți matematicieni care sunt numerele lor preferate post-pi; iată câteva dintre răspunsurile lor.
Tau
Știi ce e mai fain decât O UNĂ plăcintă? ... DOUĂ plăcinte. Cu alte cuvinte, de două ori pi, sau numărul "tau", care este aproximativ 6.28.
„Folosirea tau-ului face ca fiecare formulă să fie mai clară și mai logică decât folosirea pi”, a spus John Baez, matematician la Universitatea din California, Riverside. "Ne concentrăm asupra pi mai degrabă decât 2pi este un accident istoric."
Tau este ceea ce apare în cele mai importante formule, a spus el.
În timp ce pi raportează circumferința unui cerc la diametrul său, tau raportează circumferința unui cerc la raza sa - și mulți matematicieni susțin că această relație este mult mai importantă. Tau face, de asemenea, ecuații aparent fără legătură simetrice, cum ar fi cea pentru aria unui cerc și o ecuație care descrie energia cinetică și elastică.
Dar tau nu va fi uitat în ziua pi! Conform tradiției, Institutul Tehnologic din Massachusetts va trimite decizii la 18:28 p.m. astăzi. După câteva luni, pe 28 iunie, tau va avea propria zi.
Baza de jurnal natural
Baza logaritmelor naturale - scrisă „e” pentru numele său, matematicianul elvețian din secolul al XVIII-lea Leonhard Euler - poate să nu fie la fel de faimoasă ca pi, dar are și propria sărbătoare. Yup, în timp ce 3.14 este sărbătorit pe 14 martie, baza jurnalului natural, numărul irațional care începe cu 2.718, este leonizat pe 7 februarie.
Baza logaritmelor naturale este utilizată cel mai adesea în ecuații care implică logaritmi, creștere exponențială și numere complexe.
„are definiția minunată ca fiind singurul număr pentru care funcția exponențială y = e ^ x are o pantă egală cu valoarea sa în fiecare moment”, Keith Devlin, directorul proiectului de informare în matematică al Universității Stanford din Școala absolută de educație , a spus Live Science. Cu alte cuvinte, dacă valoarea unei funcții este, să spunem 7.5 la un anumit punct, atunci panta ei, sau derivată, la acel punct este de asemenea 7.5. Și, „ca pi, vine tot timpul la matematică, fizică și inginerie”.
Numărul imaginar i
Scoate „p” din „pi” și ce primești? Așa este, numărul i. Nu, chiar nu funcționează, dar sunt un număr destul de fain. Este rădăcina pătrată de -1, ceea ce înseamnă că este un încălcător de reguli, deoarece nu trebuie să luați rădăcina pătrată a unui număr negativ.
"Cu toate acestea, dacă încălcăm această regulă, vom inventa numerele imaginare și, astfel, numerele complexe, care sunt atât frumoase și utile", a spus Eugenia Cheng, matematician la Școala Institutului de Artă din Chicago, pentru Live Science în un email. (Numerele complexe pot fi exprimate ca suma ambelor părți reale și imaginare.)
i este un număr excepțional de ciudat, deoarece -1 are două rădăcini pătrate: i și -i, a spus Cheng. "Dar nu putem spune care dintre ele este!" Matematicienii trebuie să aleagă doar o rădăcină pătrată și să o numească eu și cealaltă -i.
"Este ciudat și minunat", a spus Cheng.
Eu la puterea lui
Credeți sau nu, există modalități de a face și mai ciudat. De exemplu, puteți ridica i la puterea lui i - cu alte cuvinte, luați rădăcina pătrată de -1 ridicată la puterea pătrată-rădăcină-a-negativă-una.
„La o vedere, acesta arată ca cel mai imaginar număr posibil - un număr imaginar ridicat la o putere imaginară”, David Richeson, profesor de matematică la Colegiul Dickinson din Pennsylvania și autor al viitoarei cărți „Tales of Impossibility: The 2.000- Anul Quest pentru a rezolva problemele matematice ale antichității ", (Princeton University Press), a declarat la Știința în direct. "Dar, de fapt, așa cum a scris Leonhard Euler într-o scrisoare din 1746, este un număr real!"
Găsirea valorii i la puterea i implică rearanjarea formulei lui Euler referitoare la numărul irațional e, numărul imaginar i și sinusul și cosinusul unui unghi dat. La rezolvarea formulei pentru un unghi de 90 de grade (care poate fi exprimat ca pi peste 2), ecuația poate fi simplificată pentru a arăta că i la puterea lui i este egală cu ridicată la puterea pi peste 2.
Pare confuz (iată calculul complet, dacă îndrăzniți să-l citiți), dar rezultatul este egal cu aproximativ 0,207 - un număr foarte real. Cel puțin, în cazul unui unghi de 90 de grade.
"După cum a subliniat Euler, eu la puterea i nu are o singură valoare", a spus Richeson, ci mai degrabă preia valori "la infinit de multe", în funcție de unghiul pentru care rezolvați. (Din această cauză, este puțin probabil să vedem vreodată „eu la puterea zilei” sărbătorită ca o sărbătoare calendaristică.)
Numărul principal al lui Belphegor
Numărul prim al lui Belphegor este un număr prim palindromic, cu un 666 care ascunde între 13 zerouri și un 1 pe ambele părți. Numărul nefăcut poate fi prescurtat ca 1 0 (13) 666 0 (13) 1, unde (13) indică numărul de zerouri între 1 și 666.
Deși nu a „descoperit” numărul, omul de știință și autorul Cliff Pickover a făcut celebru numărul simțitorului sinistru când l-a numit după Belphegor (sau Beelphegor), unul dintre cei șapte prinți demoni ai iadului.
Numărul are, aparent, chiar propriul său simbol diabolic, care arată ca un simbol în sus pentru pi. Potrivit site-ului web al lui Pickover, simbolul este derivat dintr-o glifă din misteriosul manuscris Voynich, o compilare din ilustrații și text din secolul al XV-lea pe care nimeni nu pare să le înțeleagă.
2 ^ {aleph_0}
Matematicianul de la Harvard W. Hugh Woodin și-a dedicat anii și anii de cercetare pentru numere infinite, și, astfel, în mod surprinzător, a ales ca numărul său preferat unul infinit: 2 ^ {aleph_0}, sau 2 ridicată puterii telefoanelor. Numerele Aleph sunt utilizate pentru a descrie mărimile seturilor infinite, unde un set este orice colecție de obiecte distincte din matematică. (Deci, numerele 2, 4 și 6 pot forma un set de dimensiuni 3.)
În ceea ce privește motivul pentru care Woodin a ales numărul, el a spus: „Realizarea faptului că 2 ^ {aleph_0} nu este aleph_0 (adică teorema lui Cantor) este realizarea faptului că există dimensiuni diferite ale infinitului. Deci, aceasta face ca concepția lui 2 ^ { aleph_0 } destul de special. "
Cu alte cuvinte, există întotdeauna ceva mai mare: numerele cardinale infinite sunt infinite și deci nu există „cel mai mare număr cardinal”.
Constanta lui Apéry
"Dacă numiți un favorit, atunci constanta lui Apéry (zeta (3)), pentru că există încă un mister asociat cu acesta", a spus matematicianul Harvard Oliver Knill la Live Science.
În 1979, matematicianul francez Roger Apéry a dovedit că o valoare care va deveni cunoscută drept constantă a lui Apéry este un număr irațional. (Începe 1.2020569 și continuă la infinit.) Constanța este scrisă și ca zeta (3), unde „zeta (3)” este funcția zeta Riemann când conectați numărul 3.
Una dintre cele mai mari probleme remarcabile în matematică, ipoteza Riemann, face o predicție despre momentul în care funcția zeta Riemann este egală cu zero și, dacă se dovedește adevărat, ar permite matematicienilor să prezice mai bine modul în care sunt distribuite numerele prime.
Dintre ipoteza Riemann, renumitul matematician al secolului XX David Hilbert spunea cândva: „Dacă ar fi să mă trezesc după ce am dormit o mie de ani, prima mea întrebare ar fi:„ A fost dovedită ipoteza Riemann? ”
Deci, ce este atât de fain despre această constantă? Se dovedește că constanta lui Apéry apare în locuri fascinante din fizică, inclusiv în ecuații care guvernează forța magnetică a electronului și orientarea către momentul său unghiular.
Numărul 1
Ed Letzter, matematician la Temple University din Philadelphia (și, dezvăluit complet, tatăl scriitorului de științe vii Rafi Letzter), a avut un răspuns practic:
"Presupun că acesta este un răspuns plictisitor, dar ar trebui să aleg 1 ca preferat al meu, atât ca număr, cât și în rolurile sale diferite în contexte mult mai diferite," a spus Live Science.
Unul este singurul număr prin care toate celelalte numere se împart în numere întregi. Este singurul număr divizibil cu exact un singur număr pozitiv (el însuși, 1). Este singurul număr întreg pozitiv care nu este nici prim, nici compus.
Atât în matematică, cât și în inginerie, valorile sunt adesea reprezentate între 0 și 1. „Sută la sută” este doar un mod fantezist de a spune 1. Este întreg și complet.
Și, desigur, în întreaga știință, 1 este folosit pentru a reprezenta unitățile de bază. Se spune că un singur proton are o taxă de +1. În logica binară, 1 înseamnă că da. Este numărul atomic al celui mai ușor element și este dimensiunea unei linii drepte.
Identitatea lui Euler
Identitatea lui Euler, care este de fapt o ecuație, este o adevărată bijuterie matematică, cel puțin așa cum a fost descris de regretatul fizician Richard Feynman. De asemenea, a fost comparat cu un sonet Shakespearean.
Pe scurt, Identitatea lui Euler leagă o serie de constante matematice: pi, logul natural e și unitatea imaginară i.
"conectează aceste trei constante cu identitatea aditivă 0 și identitatea multiplicativă a aritmeticii elementare: e ^ {i * Pi} + 1 = 0", a spus Devlin.
Puteți citi mai multe despre identitatea lui Euler aici.